

Developing a Water Supply Planning Model for EBMUD

2016 RiverWare User Group Meeting

August 23rd

GARY PALHEGYI, P.E., D,WRE

BEN BRAY, PH.D., P.E.

Acknowledgment

- Hydos Consulting Inc.
 - Steve Setzer
 - John Carron
 - Jennifer Thomasson

Why a New Planning Model?

- Previous model built in FORTRAN
 - Many years of edits, changes and manipulation
 - Loosing experts that can manage the model
 - Difficult to make code changes and integrate new components
- Update to modern software (*RiverWare*)
 - Improved system and temporal resolution
 - Improved capabilities and flexibility
 - Improved transparency

Fixed Demand Planning Model

- Demands defined by User
 - LOD: 2015, 2020, 2030, 2040
 - EBMUD customers, river diversions
- Historical hydrology (1921 to 2012)
 - Mokelumne River watershed runoff
 - Local watersheds
- Daily time step

- Meet obligations for water right holders
- Comply with environmental requirements

 Flows and temperature
- Meet USACE flood reserve requirements
- Meet EBMUD customer demands
 - Implement drought management plan

Environmental Flow Requirements

Year Type		
AN	Above Normal	
Ν	Normal	
BN	Below Normal	
D	Dry	
CD	Critically Dry	
-		

Goal: Maintain water temperatures in the Lower Mokelumne River for fisheries

 Maintain Camanche hypolimnetic volume (*Temp* ≤ 16.4°C) at or above 28 TAF thru October.

Camanche Hypolimnion

Drought Management Plan

- Drought Planning Sequence
- Customer Demand Rationing
- Supplemental Supplies
 - Freeport Regional Water Project
- Need for Water
 - Transfers

Drought Planning Sequence

• 1976, 1977 and modified 1978

Forecasting Future Storage

End-of-Sept Total-System-Storage

Rationing

Drought Stage	EOS-TSS (TAF)	Rationing Goal
Normal	500 TAF or more	None
Moderate	500 – 425	0 to 10%
Significant	425 – 390	10% to 15%
Severe	390 – 325	15% to 20%
Critical	Less than 325	20% Max

Need for Water

14

Rules Organization

Pardee Reservoir

Comparison of Pardee Reservoir Storage (RiverWare vs. OBSERVED)

Camanche Reservoir

450000

Comparison of Camanche Reservoir Storage (RiverWare vs. OBSERVED)

Comparison of Camanche Outflows (RiverWare vs. OBSERVED)

OBSERVED Total System Storage (TAF)

- Phase out FORTRAN model
- Adopted by Operations Dept
- Accounting

gpalhegy@ebmud.com 510-287-2068 *bbray*@*ebmud.com* 510-287-0206

